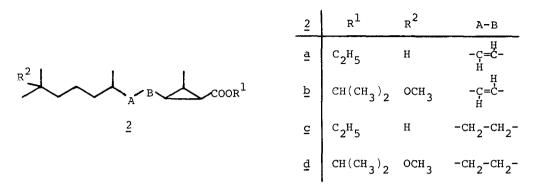
SYNTHESIS OF ALKENOIC ACID DERIVATIVES CONTAINING CYCLOPROPANE RING, NEW JUVENILE HORMONE ANALOGS¹

Gábor Baán^a, Péter Vinczer^a, Lajos Novák^b and ^{*}Csaba Szántay^{a,b}

^aCentral Research Institute for Chemistry of the Hungarian Academy of Sciences, H-1525 Budapest, Hungary

^bInstitute for Organic Chemistry, Technical University of Budapest, H-1111 Budapest, Hungary

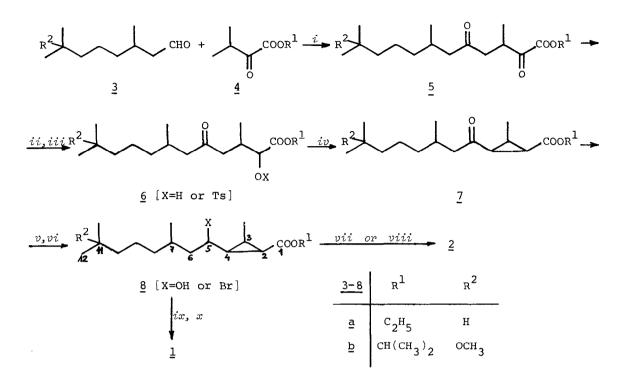
Abstract: A synthetic method is described for the preparation of new type juvenoids [2].


In the last twenty years hundreds of chemical structures with juvenil hormone activity have been synthesized and investigated². Among these juvenoids, the alkyl (2E,4E)-3,7,11-trimethyl-2,4-dodecadienoates are the most effective insect growth regulators³. Hydroprene [<u>1a</u>] and methoprene [<u>1b</u>] are successfully used in controlling important agricultural pest species.

Detailed structure-biological activity studies showed that the structure and geometry (E,E configuration) of the C_{1-5} unit of 1 were important in point of effectivity^{2b,4a}. A substantial enhancement of biological activity could be realized by introducing rigid structural element into this part of the molecule⁴.

Now we report a simple synthesis of new type of juvenoids [2] in which the alkenoic acid has an internal cyclopropane ring close to the carboxylic group^{5,6,7}.

In the synthesis of 2 we started from the readily available substituted dihydro-citronellal [3]. Thiazolium ion catalysed⁸ conjugate addition reaction⁹ of 3 to alkyl 2-oxo-3-methyl-3-butenoate¹⁰ [4] yielded 2,5-dioxo-dodecanoic acid



derivative¹¹ [5] (20hr, 95-100°C) which was selectively reduced at the α -carbonyl group with sodium borohydride (0,6 mol in THF 0°C, 1hr) in high yield. The resulting alcohol [6: X=H] was converted to the corresponding tosylate [6:X=TS] by p-toluenesulfonyl chloride in the presence of pyridine (24hr, 25°C). Treatment of the crude tosylate with potassium t-butoxid (2 ekv in benzene, r.t., 30 min) in the presence of catalitic amount of 18-Crown-6 afforded a diastereomeric mixture of 7¹², which was not separated. The carbonyl group of 7 was reduced with sodium borohydride at the boiling point of the appropriate alcohol (ethanol or isopropanol, 4hr) and the resulting alcohol [8: X=OH] was halogenated with phosphorous tribromide (LiBr, 2,4,6-collidine, 3hr, -40 to $0^{\circ}C$)¹³. Treatment of the resulting bromo ester [8: X=Br]¹⁴ with DBU (50°C, 2hr) to effect elimination of hydrogen bromide afforded target compounds 2a,b¹⁵. Finally, reduction of bromo ester [8: X=Br] with sodium cyanoborohydride (4 ekv in HMPT, 70°C, 3hr) yielded compounds 2c,d.

Furthermore, intermediates § [X=Br] were easily converted to hydroprene [1a] and methoprene [1b], respectively, by homoallylic rearrangement $(2nBr_2 in ether, -40 to 0°C, 2hr)^{17}$ followed by base-catalysed elimination (DBU, 50°C, 2hr).

The biological screening of compounds <u>2a-d</u> is currently being carried out.

<u>Acknowledgements</u>: The authors wish to thank to EGIS Pharmaceutical Works for partial financial support, E.Baitz-Gács and M.Kajtár-Peredy for 1 Hand 13 C-NMR, J.Tamás for MS measurements, and Mrs. M. Roczkov and Mrs. B. Moór for technical assistance.

i: N-(2-Hydroxyethyl)-thiazolium bromide/Et₃N/Dioxane; ii: NaBH₄/THF; iii: TsCl/Pyridine; iv: KOBu^t/Benzene/18-Crown-6; v; NaBH₄/R¹OH; vi: PBr₃/LiBr/2,4,6-collidine; vii: DBU; viii: NaBH₃CN/HMPT; ix: ZnBr₂/ether; x: DBU

References and Notes:

- 1/ Taken in part from P.Vinczer Ph.D. Dissertation; Technical University of Budapest, 1984.
- 2/ a: SEHNAL, F.: Juvenile Hormone Analogues, in "Endocrinology of Insects" New York, A.R.Liss Inc., <u>1983</u>, p. 657-672; b: HENRICK, C.A.: Juvenile Hormone Analogs: Structure-activity Relationships, in "Insecticidal Modes of Action" /Ed. J.R. COATS/, New York, Acad.Press, <u>1982</u>, p. 315-402
- 3/ a: HENRICK, C.A.; STAAL, G.B.; SIDDALL, J.B.: J.Agr.Food.Chem., <u>1973</u>, 21, 354; b: HENRICK, C.A.; WILLY, W.E.; STAAL, G.B.: J.Agr.Food.Chem., <u>1976</u>, 24, 207; c: HENRICK, C.A.; WILLY, W.E.; BAUM, J.W.; BAER, T.A.; GARCIA, B.A.; MASTRE, T.A.; CHANG, S.M.: J.Org.Chem. <u>1975</u>, 40, 1; d: HENRICK, C.A.; WILLY, W.E.; MCKEAN, D.R.; BAGGIOLINI, E.; SIDDALL, J.B.: J.Org.Chem., <u>1975</u>, 40,8; e: HENRICK, C.A.; ANDERSON, R.J.; STAAL, G.B.; LUDVIK, G.F.: J.Agr.Food. Chem., <u>1978</u>, 26, 542.

- 4/ a: HENRICK, C.A.; STAAL, G.B.; SIDDALL, J.B.: Structure Activity Relationships in Some Juvenile Hormone Analogs, in "The Juvenile Hormones" (Ed. L.I. GILBERT), New York, Plenum Press, <u>1976</u>, p. 48-60. b: HENRICK, C.A.; LABOVITZ, J.N.; GRAVES, V.L.; STAAL, G.B.: *Bioorganic Chem.*,<u>1978</u>,7, 235; c: NOVÁK, L.; ROHÁLY, J.; KOLONITS, P.; FEKETE, J.; VARJAS, L.; SZÁNTAY, Cs.: *Liebigs Ann. Chem.* 1982, 1173.
- 5/ Dodecanoates with exo-cyclopropane ring [2,3-methano-dodecanoates (Cyclopren)]: a/ KOCOR, M.; SOBOTKA, W.; STERZYCKY, R.; STYCZYNSKA, B.; Rocz.Chem., <u>1976</u>, 50, 1337; b: SOBOTKA, W.; ZABZA, A.: Juvenoids with Alicyclic System, in "Regulation of Insect Development and Behaviour" (Eds. SEHNAL, F.; ZABZA, A.; MEN, J.J.; CYMBOROWSKY, B.), Wroclaw Techn. Univ. Press. <u>1981</u>, 275-288.
- 6/ DeMEIJERE, A.: Angew.Chem.Int.Ed.Eng., <u>1979</u>, 18, 809.
- 7/ NAKAYAMA, A.; IWAMURA, H.: FUJITA, T.: J.Med.Chem., 1984, 27, 1493.
- 8/ a: NOVÁK, L.; BAÁN, G.; MAROSFALVI, J., SZÁNTAY, Cs.: Chem.Ber., <u>1980</u>, 113, 2939, b: STETTER, H.: Angew.Chem., <u>1976</u>, 88, 695.
- 9/ a: LEVER, O.W.: Tetrahedron, <u>1971</u>, <u>32</u>, 1943; b: SEEBACH, D.; KOLB, M.: Chem. and Ind. <u>1974</u>, 687; c: SEEBACH, D.; Angew.Chem.Int.Ed.Engl. <u>1979</u>, 18, 239; d: MARTIN, S.F.; Synthesis, <u>1979</u>, 633.
- 10/ Compounds <u>4a,b</u> were prepared by MnO₂ oxidation of the appropriate alkyl 2-hydroxy-3-methyl-3-butenoates^{18,19}.
- ll/ Characteristic spectral data of 5: IR [film] v_{max} :1740 cm⁻¹; ¹H-NMR [100 MHz,CDCl₃] δ : 3,61 (m,1H,C³-H); 2,1-3,1 (m,4H,CH₂-C⁵O-CH₂); 1,15 (d,J=7Hz,3H,C³-CH₃); 0,86 (d,J=7Hz, 3H,C⁷-CH₃); 1,O-1,6 (m,CH₂); ¹³C-NMR [25,2 MHz, CDCl₃] δ : 160,7 (C¹); 196,6 (C²); 37,2 (C³); 15,8 (C³); 46,9 (C⁴); 208,6 (C⁵); 49,9 (C⁶); 27,9 (C⁷); 19,8 (C⁷) ppm.
- 12/ Characteristic spectral data of diastereomeric mixutre of 7: IR[film] v_{max} : 1700, 1735 cm⁻¹; ¹H-NMR [100 MHz, CDCl₃] $_{\delta}$: 2,1-2,7 (m,4H,CH_X-CO); 1,1-2,0 (m,CH₂); 1,24 (d,J=7Hz,3H,C³-CH₃); 0,83 (d,J=7Hz,C⁷-CH₃); ¹³C-NMR [25,2 MHz, CDCl₃] $_{\delta}$: 169,8 (c¹); 30,2 (c²); 25,7 (c³); 11,3 (c^{3'}); 35,8 (c⁴); 207,8 (c⁵); 51,7 (c⁶); 27,9 (c⁷); 19,9 (c^{7'}) ppm.
- 13/ BRADY, F.S.; ILTON, M.A.; JOHNSON, W.S.: J.Am. Chem. Soc., 1968, 90, 2882.
- 14/ Characteristic spectral data of $\underline{8}$ (e.g.: $R^{1}=iPr$, $R^{2}=OMe$; X=Br): IR [film] v_{max} : 1735 cm⁻¹; ¹H-NMR [100 MHz, CDCl₃] δ : 4,98 (h, J=6Hz, 1H, COOCH); 4,0-4,15 (m,1H, CHBr); 3,16 (s,3H, CH₃O); 1,05-1,9 (m,12H); 1,21 (d,J=6Hz,6H,CH(CH₃)₂); 1,12 (s,6H,C¹¹(CH₃)₂); O,92 (dd,J=6Hz,6H,CH₃) ppm; MS: m/z 377(1), [M⁺_1=15, ⁸¹Br]; 375(1), [M⁺-15, ⁷⁹Br]; 279(6) [M-(HBr+OMe)]; 237(8),[[279-iPr⁺]; 191(6); 73 (100).
- 15/ Characteristic spectral data of <u>2b</u> (e.g.: $R^1 = iPr, R^2 = OMe$): IR [film] v_{max} : 1735 cm⁻¹; ¹H-NMR [100 MHz, CDCl₃] δ : 5,45 (m,2H,CH=); 4,97 (h, J=6Hz,1H,C00CH=); 3,16 (s,3H,CH₃O); 1,05-2,1 (m, 9H); 1,21 (d, J=6Hz,6H, CH(CH₃)₂); 1,12 (s,6H,C¹¹(CH₃)₂); 0,9 (dd,J=6Hz,6Hz,6Hz,6H,CH₃).
- 16/ HUTCHINS, R.O.; MARYANOFF, B.E.; MILEWSKI, C.A.; Chem. Commun., 1971, 1097.
- 17/ MCCORMICK, J.P.; BARTON, D.L.: J.Org.Chem., 1980, 45, 2566.
- 18/ VOGEL, E.; SCHINZ, H.: Helv. Chim. Acta., 1950, 33, 116.
- 19/ FATIADI, A.J.: Synthesis, <u>1976</u>, 65, 113.

(Received in UK 19 June 1985)